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Abstract. Let ωy(n) denote the number of distinct prime divisors of n less than y. Suppose yn
is an increasing sequence of positive real numbers satisfying log yn = o(log logn). In this paper,
we prove an Erdös-Kac theorem for the distribution of ωyn(p + a), where p runs over all prime
numbers and a is a fixed integer. We also highlight the connection between the distribution of
ωy(p − 1) and Ihara’s conjectures on Euler-Kronecker constants.

1. Introduction

Let ω(n) denote the number of distinct prime divisors of n. The distribution of ω(n) as we
vary n, has been extensively studied in the last century. The average value of ω(n) for n ≤ x can
be easily computed as

1

x
∑
n≤x

ω(n) =
1

x
∑
p≤x
∑
n≤x,
p∣n

1 =
1

x
∑
p≤x

[
x

p
] = log logx +O(1)

as x→∞. In 1917, Hardy and Ramanujan [13] proved that the normal order of ω(n) is log logn.
More precisely, for any ε > 0, as x→∞, we have

#{n ≤ x ∣n satisfies ∣ω(n) − log logn∣ > ε log logn} = o(x). (1)

A simplified proof of the Hardy-Ramanujan result was given by Turán [22] in 1934, by considering
the second moment of ω(n). After Turán’s paper appeared, M. Kac posed the question of finding
the distribution of

ω(n) − log logn
√

log logn
, (2)

as n varies and suggested that this distribution was perhaps Gaussian. This led to the famous
Erdös-Kac theorem [7] which states that for any real numbers a, b

lim
x→∞

1

x
#{n ≤ x ∣a ≤

ω(n) − log logn
√

log logn
≤ b} =

1
√

2π
∫

b

a
e−t

2/2 dt.

Thus, the quantity in (2) has the standard normal distribution. The original proof of Erdös and
Kac used Brun’s sieve and the central limit theorem. Alternate proofs of the Erdös-Kac theo-
rem were given using different methods by Selberg [20], Halberstam [11], Billingsley [1](using the
method of moments which we adopt below) and Shapiro [21].
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Localized Erdös-Kac theorem studies the distribution of ωy(n), which denotes the number of
prime divisors of n less than y. This line of study was initiated by the authors in [3], where they
proved that the distribution of

ωyn(n) − log log yn
√

log log yn
(3)

is Gaussian as long as limn→∞
log yn
logn = 0. In this paper, we study the distribution of ωy(p + a),

where p varies over prime numbers and a is some fixed integer. The distribution of ω(p + a) has
been carefully studied in the last century. In fact, Erdös [6] proved that the normal order of
ω(p − 1) is log log p. Subsequently Haselgrove [14] showed that the normal order of ω(p + a) is
log log(p+a). Following further developments by Prachar [19], Halberstam [11] proved an Erdös-
Kac type theorem for the distribution of ω(p + a). Our goal is to prove a localized Erdös-Kac
theorem for the distribution of ωy(p + a).

Let Ω be the set of positive integers and Pn be the probability measure placing mass 1/π(n)
for each {2,3,5,⋯, pj}, where pj denotes the largest prime ≤ n. We prove the following version
of the Erdös-Kac theorem for ωy(p + a).

Theorem 1.1. Let yn be an increasing sequence of real numbers satisfying yn → ∞ as n → ∞
and suppose

lim
n→∞

log yn
log log(n)

= 0.

Then, for every pair of real numbers αandβ, we have

lim
n→∞

Pn(p prime: α ≤
ωyn(p + a) − log log yn

√
log log yn

≤ β) =
1

√
2π
∫

β

α
e−t

2/2 dt.

Remark. Note that there is a discrepancy in the rate at which yn tends to infinity in (3) and
Theorem 1.1. The heart of the proof of these results lies in exploiting the fact that primes behave
like random variables. The closer it is to behaving like random variables, the better rate one can
impose on yn. This is captured in Lemma 2.3 of the next section. In the setting of all positive
integers, one can say that primes are closer to behaving like random variables as opposed to
integers of the form {p + a}, which is precisely the reason for this discrepancy.

2. A generalized central limit theorem

We elaborate in this section about a general method initiated in [3] that is applicable in a
wider context. The proof of Theorem 1.1 relies on this method and the method of moments,
stated below (see [2, pp. 312]).

Theorem 2.1 (Method of moments). Let µ be a probability measure on the line having finite
moments

αk = ∫
∞

−∞
xk µ(dx),

for all positive integers k. If the power series

∞
∑
k=1

αkr
k

k!

has a positive radius of convergence, then µ is the only probability measure with moments α1, α2,⋯.

The second ingredient is the central limit theorem. We state the Lyapunov central limit
theorem below (see [2, pp. 342]).
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Theorem 2.2 (Lyapunov central limit theorem). For i ∈ N, let Xi be independent random
variables, with mean µi and variance σ2i respectively. Denote by s2n = ∑

n
i=1 σ

2
i . If for some δ > 0,

the Lyapunov condition

lim
n→∞

1

s2+δn

n

∑
i=1
E[∣Xi − µi∣

2+δ] = 0 (4)

is satisfied, then we have
1

sn

n

∑
i=1

(Xi − µi) → N(0,1),

where N(0,1) denotes the standard normal distribution, with mean 0 and variance 1.

The following is of independent interest and follows an idea from our earlier work [3]. We first
prove a generalized central limit theorem, which will play a crucial role in the proof of Theorem
1.1.

Let f and g be non-decreasing functions on positive integers, such that as n tends to infinity,
f(n) and g(n) tend to infinity and

log f(n) = o(log g(n)).

We prove the following.

Lemma 2.3. For i ∈ N, let Xi be independent random variables, taking bounded values and
satisfying the Lyapunov condition (4) with mean µi and variance σ2i . Let Yi be random variables,
not necessarily independent such that

E[Xi1Xi2⋯Xik] = E[Yi1Yi2⋯Yik] +O (
1

g(n)
) , (5)

for ij ≤ f(n) for all 1 ≤ j ≤ k. Then, as n→ +∞ we have,

1

sn

f(n)
∑
i=1

(Yi − µi),

converges to the standard normal distribution N(0,1), where s2n = ∑
f(n)
i=1 σ2i .

Proof. Let Sn = ∑j≤f(n)Xj and Tn = ∑j≤f(n) Yj . Denote the mean and variance of Sn as cn and

s2n respectively. As the Lyapunov condition is satisfied for Sn, by Theorem 2.2, we conclude that
as n tends to infinity, (Sn − cn)/sn converges to the standard normal distribution. Since Xn’s
are bounded, the method of moments applies here and from Theorem 2.1 we have that the r-th
moment of (Sn − cn)/sn converges to the r-th moment of the normal distribution, i.e.,

mr = lim
n→∞

E[(
Sn − cn
sn

)
r

]

for all r, where mr denotes the r-th moment of the standard normal distribution.

Let dn and r2n denote the mean and variance of Tn respectively. By condition (5), we have

cn = dn +O(1) and s2n = r
2
n +O(1)

as n tends to infinity. Hence, to prove Theorem 2.3, it suffices to show that as n→∞

E[(
Sn − cn
sn

)
r

] −E[(
Tn − cn
sn

)
r

] → 0 (*)
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for each r. We have

E[Srn] =
r

∑
u=1
∑

′ r!

r1!⋯ru!

1

u!
∑

′′

E[Xi1⋯Xiu], (6)

where ∑
′

runs over tuples (r1,⋯, ru) satisfying r1 + ⋯ + ru = r and ∑
′′

is over tuples (i1,⋯, iu),
where ij ’s are distinct and not exceeding f(n).

Similarly, we get

E[T rn] =
r

∑
u=1
∑

′ r!

r1!⋯ru!

1

u!
∑

′′

E[Yi1⋯Yiu], (7)

where ∑′ and ∑′′ are as in (6). By (5), the summands in (6) and (7) differ by O(1/g(n)). Hence,

∣E[Srn] −E[T rn]∣ ≪
1

g(n)

⎛

⎝
∑

j≤f(n)
1
⎞

⎠

r

= O (
f(n)r

g(n)
) .

Now we have

E[(Sn − cn)
r] =

r

∑
k=0

(
r

k
)E[Skn] (−cn)

r−k.

Similarly, we obtain

E[(Tn − cn)
r] =

r

∑
k=0

(
r

k
)E[T kn ] (−cn)

r−k.

Comparing these expressions, we get

∣E[(Sn − cn)
r] −E[(Tn − cn)

r]∣ ≤
r

∑
k=0

(
r

k
)
f(n)k

g(n)
cr−kn =

(f(n) + cn)
r

g(n)
.

SinceXi’s take bounded values, we have cn = O(f(n)). Using the condition log f(n) = o(log g(n)),
we conclude that

lim
n→∞

(f(n) + cn)
r

g(n)
= 0.

Dividing by srn, we see that (*) follows. �

3. A localized Erdös-Kac theorem for ωy(p + a)

Proof of Theorem 1.1. Our method of proof follows Billingsley [1]. For a prime p, let

δp(m) ∶= {
1 if p ∣m
0 otherwise.

Then, we find that

ωy(m) = ∑
p≤y

δp(m).

We now invoke the Siegel-Walfisz theorem [23]. Let π(x; q, a) denote the number of primes ≤ x
such that q ≡ a mod p. Then, for q ≤ (logx)N

π(x, q, a) =
li(x)

φ(q)
+O (x exp (−cN

√
logx)) , (8)

where cN > 0 is a constant only depending on N .
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Let p1, p2,⋯, pu be a set of distinct primes ≤ y. Using (8), as n→ +∞

Pn[q prime, q ≤ n ∣ δp1(q + a) = ⋯ = δpu(q + a) = 1]

=
1

(p1 − 1)(p2 − 1)⋯(pu − 1)
+O (

1

logn
) .

This indicates that under Pn, δpi ’s behave like independent random variables up to a small
error. For a function f supported on primes, define

En[f] =
1

π(n)
∑
p≤n

f(p).

For all primes p, let Xp be independent random variables taking values {0,1}, satisfying

P [Xp = 1] =
1

p − 1
and P [Xp = 0] = 1 −

1

p − 1
.

If p1,⋯, pu are distinct, then we have

P[Xp1 = ⋯ =Xpu = 1] =
1

(p1 − 1)(p2 − 1)⋯(pu − 1)
.

Let Sn = ∑
p≤yn

Xp. The mean and variance of Sn are given by

cn = ∑
p≤yn

1

p − 1
= log log yn +O(1)

and

s2n = ∑
p≤yn

1

p − 1
(1 −

1

p − 1
) = log log yn +O(1).

Since Xp’s are independent, we have

E[Xp1⋯Xpu] =
1

(p1 − 1)⋯(pu − 1)
.

We also have

En[δp1⋯δpu] =
1

(p1 − 1)⋯(pu − 1)
+O (

1

logn
) .

Hence, we have

E[Xp1⋯Xpu] −En[δp1⋯δpu] = O (
1

logn
)

for all pi ≤ yn. The proof now follows from Lemma 2.3. �
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4. Ihara’s conjecture and ωy(p − 1)

There is an intricate connection between the distribution of ωy(p − 1) and Ihara’s conjecture
on Euler-Kronecker constants. This was also a motivation for Theorem 1.1, which is certainly an
interesting result in its own respect. In this section, we state Ihara’s conjecture and describe its
connection to ωy(p − 1).

Let K be a number field and ζK(s) be the associated Dedekind zeta-function defined on the
half-plane R(s) > 1 as

ζK(s) ∶= ∑
a⊂OK

1

Nas
= ∏

p⊂OK
(1 −

1

Nps
)
−1
,

where a runs over all non-zero integral ideals and p runs over all non-zero prime ideals of the ring
of integers OK .

The function ζK(s) has an analytic continuation to the whole complex plane except for a simple
pole at s = 1. If the Laurent expansion of ζK(s) near s = 1 is written in the form

ζK(s) =
c−1
s − 1

+ c0 +O(s − 1),

then the Euler-Kronecker constant associated to K, introduced by Ihara [16] is defined as

γK ∶=
c0
c−1

.

One could also view γK as the constant term in the Laurent expansion of the logarithmic derivative
of ζK(s) at s = 1, i.e.,

−
ζ ′K
ζK

(s) =
1

s − 1
− γK +O(s − 1). (9)

Note that when K = Q, the Euler-Kronecker constant γQ is nothing but the Euler-Mascheroni
constant γ. In [16], Ihara proved the following bounds for γK using Weil’s explicit formula:

γK ≤ 2 log log
√

∣dK ∣ (under GRH)

γK ≥ − log
√

∣dK ∣ (unconditionally),

where dK denotes the discriminant of K over Q. In [4], we indicated that there is no need to use
the Weil explicit formula method to derive the upper bound and one can deduce an analogous
upper bound directly and prove that

γK ≤ [2 log log ∣dK ∣] (1 +O (
log log log ∣dK ∣

log log ∣dK ∣
)) .

This essentially is the best known conditional upper bound for γK . However, Ihara noticed that
these bounds are much sharper when K = Q(ζm) is a cyclotomic field. Based on numerical com-
putations for m ≤ 8000, Ihara [17] made the following conjectures. Henceforth, for a cyclotomic
field K = Q(ζm), the associated Euler-Kronecker constant will be denoted by γm.

Conjecture 1 (Ihara). For K = Q(ζm),

a. γm > 0 for all m.
b. There exist positive constants c1, c2, both ≤ 2, such that for any ε > 0,

(c1 − ε) logm < γm < (c2 + ε) logm

for sufficiently large m. If m is a prime, one can choose c1 = 1/2 and c2 = 3/2.
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In 2014, K. Ford, F. Luca and P. Moree [8] showed that the prime k-tuple conjecture, as for-
mulated by Hardy and Littlewood, is incompatible with Ihara’s conjectures.

A set of positive integers {a1, a2,⋯, ak} is said to be admissible if collection of the form n and
ain+1, 1 ≤ i ≤ k have no fixed prime factor. The prime k-tuple conjecture states that for such an
admissible set, the number of primes n ≤ x for which ain + 1 are all primes is ≫ x/(logx)k+1.

In fact, Ford, Luca and Moree showed that this conjecture implies γq < 0 infinitely often. By
constructing a nice admissible set, they also explicitly produced a prime, namely q = 964477901,
for which

γq = −0.18237⋯

Furthermore, under the prime k-tuple conjecture, they showed that

lim inf
q→∞

γq

log q
= −∞.

In spite of this, it would seem that Conjecture 1(b) is not very far from the truth. In support of
this, V. K. Murty [18] proved that

∑
q∼Q, q prime

∣γq ∣ ≪ π∗(Q) logQ,

where q ∼ Q means Q ≤ q ≤ 2Q and π∗(Q) denotes the number of primes in this interval. E.
Fouvry [9] generalized this to

1

Q
∑
m∼Q

γm = logQ +O(log logQ),

where m runs over all positive integers in the interval and Q ≥ 3. Both these results are quite
deep and show that Conjecture 1(b) holds on average. In fact, assuming the Elliott-Halberstam
conjecture, in [4], we prove that

∑
q∼Q, q prime

∣γq − log q∣ = o(Q).

A similar result under the Elliot-Halberstam conjecture was also recently obtained by Hong, Ono
and Zhang [15], i.e.,

1

Q
∑
q∼Q

∣γq − log q∣ = o(logQ).

All the above results indicate that Conjecture 1(b) should fail very rarely, but perhaps infinitely
often. However, it is still not known unconditionally whether γm < 0 for infinitely many positive
integers m. In attempting to tackle this problem, we noticed that it is intricately connected to
understanding the distribution of ωy(p − 1). We discuss this connection below.

In [4, Lemma 9.1], we prove that for any fixed δ > 0, there is an x0(δ) > 0 such that for any
x > x0(δ) and any prime q satisfying logx > qδ,

γq = −(q − 1) ∑
n≡1 mod q

n≤x

Λ(n)

n
+ logx −

log q

q − 1
+O ((logx)

1
2
+ 1
δ exp (−c

√
logx)) . (10)
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Note that the summation on the right hand side is bounded over higher prime powers. Indeed,
for any x > 1 not a prime power, and noting that fp is the order of p (mod q), we have

S(q, x) ∶= (q − 1) ∑
n≡1 mod q

n≤x

Λ(n)

n
− ∑
p≡1 mod q

p≤x

(q − 1) log p

p

= ∑
p≡1 mod q

∑
l≥2
pl≤x

(q − 1) log p

pl
+ ∑
p≢1 mod q

∑
l≥1
pl≤x

(q − 1) log p

plfp

≤ ∑
p≡1 mod q

p≤x

(q − 1) log p

p(p − 1)
+ ∑
p≢1 mod q

p≤x

(q − 1) log p

(pfp − 1)
+O (

log q

q
) .

Let us note that in the last sum, fp ≥ 2 because p ≢ 1 mod q. Since

∑
p≡1 mod q

p≤x

log p

p(p − 1)
≤

∞
∑
t=1

log qt

(qt + 1)qt
≪

log q

q2
,

the first term on the right hand side is O((log q)/q), where the implied constant is independent
of q. For fp > 1, we have q ∣ (pfp − 1) = (p − 1)(pfp−1 + pfp−2 + ⋯ + 1). Since q ∤ (p − 1), we get

q ∣ (pfp − 1)/(p − 1) and hence q ≤ pfp/(p − 1) ≤ 2pfp−1. Thus, the third term on the right hand
side is

∑
p≢1 mod q

p≤x

(q − 1) log p

pfp−1 (pfp − 1)
≪

∞
∑
n=1

logn

n2
≪ 1.

Hence, we have
S(q, x) = O(1).

With this observation, applying (10) and summing over primes q up to y, we obtain

∑
q≤y

γq

q − 1
= logx∑

q≤y

1

q − 1
− ∑
q≤y

∑
p≤x

p≡1 mod q

log p

p
+O(log log y)

= logx∑
q≤y

1

q − 1
− ∑
p≤x

log p

p
ωy(p − 1) +O(log log y). (11)

Recall that,

∑
q≤y

1

q − 1
= log log y +O(1),

with the error term ≤ 2. Now, using Chebychev’s theorem

∑
p≤x

log p

p
= logx +O(1),

in equation (11), we obtain for any x > 1 not a prime power,

∑
q≤y

γq

q − 1
= −∑

p≤x

log p

p
(ωy(p − 1) − log log y) + c logx +O(log log y),

where c < 2. Hence, it is clear that the oscillation in ωy(p − 1) − log log y holds the key to the
distribution of γq. For instance, to show that γq < 0 infinitely often, it suffices to prove that
ωy(p−1)− log log y oscillates in such a way that the first summand in the above sum is < −2 logx,
infinitely often. On the other hand, if γq > 0 for all q sufficiently large, above sum should tally
with [4, Theorem 1.4].
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Remark. This idea can also be used in the study of γm, when m is not a prime. In this regard,
Ihara’s Conjecture 1(a) asserts that γm > 0. Thus, to show that Ihara’s conjecture fails infinitely
often, one would like to show that there are infinitely many integers m such that γm < 0. Using
the explicit formula obtained by Gun, Murty and Rath in [10], we obtain

∑
m≤y

γm
φ(m)

= logx ∑
m≤y

1

φ(m)
− ∑
m≤y

∑
p≤x

p≡1 modm

log p

p
+O(log y)

= logx ∑
m≤y

1

φ(m)
− ∑
p≤x

log p

p
dy(p − 1) +O(log y),

where dy(n) counts the number of divisors of n less than y. We hope that this treatment would
provide an alternate approach towards this problem.

5. Concluding Remarks

The above method can be used to establish a localized Erdös-Kac theorem for more general
functions of the form ωy(f(p)). In the proof above, a key role was played by the Siegel-Walfisz
theorem. In fact, for a function f , if we can write

∑
p≤n

f(p)≡0 mod q1⋯qu

1 = (main term) + (error term) ,

for all primes q1,⋯, qu sufficiently smaller than n, we can get a localized Erdös-Kac theorem for
ωy(f(p)), provided the error term is sufficiently small.
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